Extending the Data Storage Capabilities
of a Java-based Smartcard

Clemens H. Cap, Nico Maibaum', Lars Heyden
Chair for Information and Communication Services?
University of Rostock, Germany
{cap, maibaum, heyden}@informatik.uni-rostock.de

Abstract

Present limitations on data memory for Java based
smartcards are a serious restriction for application de-
velopment. The paper presents a method for enhancing
the data memory using virtual memory. Transparency
for the off-card application is achieved by the facade de-
sign pattern. Security constraints of smartcard applica-
tions have implications for the overall architecture and
influence the proposed design. The architecture is used
in the EU project FASME for storing a larger number
of XML-based administrative documents on a JavaCard
for electronic government purposes.

1 Introduction

With more than one billion copies, smartcards are
an important device of todays information society. The
development, of the JavaCard standard made this de-
vice even more popular: Capable of processing a sub-
set of the platform independent, object oriented, and
widely used programming language Java, the JavaCard
puts smartcard technology at the disposal of many pro-
grammers and significantly shortens the time to market
for smartcard applications [5].

Unfortunately, the small memory of a JavaCard is
a serious restriction for application development. To-
day, JavaCards can be expected to have 1 — 4 kByte
of RAM (for the runtime stack, temporary variables
and transient objects) 16 32 kByte of ROM (for the
card operating system, the Java virtual machine and

ISupported by the EU Fifth Framework Project FASME,
1ST-1999-10882, http://www.fasme.org

2Supported by the Heinz-Nixdorf Foundation.
Classification (CR 1998): C.3, C.5.3, D.4.4, H.3
Keywords: Smartcard, Virtual Memory, Memory Manage-
ment, Information Storage and Retrieval, Electronic Govern-
ment.

preinstalled applications) and 8 32 kByte of (flash)
EEPROM (for the application code of the cardlets, pre-
sistent objects and class variables). It is the EEPROM
limitation which most seriously restricts developers.

Recent JavaCard projects clearly demonstrated
this limitation: [4] implemented the German na-
tional homebanking protocol HBCI (Homebanking
Computer Interface, http://www.hbci.de). Despite
many space saving techniques, the implementation
results in a CAP-file of 85 kByte and leaves only
2480 Bytes for data. As a result, only two bank
access codes can be stored on the card instead of
five as required by the HBCI specification. [6] de-
scribes problems encountered when moving the SET
protocol to a JavaCard. [7] develops techniques for
splitting a secure application protocol into an on-card
and an off-card part, in order to reduce the mem-
ory requirements of the on-card components. In the
FASME project (Facilitating Administrative Services
for Mobile Europeans, http://www.fasme.org) [8] per-
sonal and administrative data, documents and pro-
file information of a citizen is stored on a JavaCard
to facilitate administrative processes, such as regis-
tering at a new place of living. In the DISTINCT
project (Deployment and Integration of Smartcard
Technology and Information Networks for Cross-
Sector Telematics, http://www.distinct.org.uk) user
preferences on a smartcard adapt the user interface
and the collection of services offered. All mentioned
projects are troubled by the limited on-card data mem-
ory [8], [1].

An often mentioned advantage of the JavaCard is
the possibility to download new applications (so called
cardlets) dynamically, as they are required by the card
owner. Furthermore, JavaCards support multiapplica-
tion scenarios. With the above examples of memory
troubles even for single applications the practical use
of multiapplication settings may be seriously doubted,
especially with available memory sizes lagging behind

www.manaraa.com

manufacturer roadmaps and white papers announce-
ments.

What are — besides waiting for larger cards — the
present possibilities of dealing with this limitation?

It is always possible to store the identity of the card
owner on the card and to transmit it to the card termi-
nal, which then uses a database to associate this iden-
tity with the required application parameters. This
approach has obvious security and data privacy flaws
for most scenarios in which the card terminal cannot
be fully trusted. In typical smartcard applications the
card stores and transmits certain rights, profiles or spe-
cific attributes of the owner but should not disclose his
full identity. The transmitted information often is of
a confidential nature, which the user does not want to
hand over to a central database. European mental-
ity favours privacy protection mechanisms (and laws)
where personal data is under the tight control of that
person. It mandates the possibility of the card owner
to view and fully understand every bit on a smartcard
she is using.

Space saving coding techniques make a more effi-
cient use of the limited memory, but at the price of
a very twisted program structure, which is untypical
for Java and object oriented development [4]. Applica-
tion splitting techniques move parts of the code to the
(untrusted) card terminal [6]. However, the splitting
of a secure application protocol may endanger its secu-
rity properties. Furthermore, these techniques slightly
reduce the card-resident code portion and do not help
in case of large applications.

In this paper we present the smartcard extension
(SCE) as a new concept, for enlarging the memory of a
JavaCard for application data. The basic idea is well
known and uses a networked virtual memory. How-
ever, the security and privacy needs of smartcard ap-
plications require additional cryptographic techniques.
Furthermore, the smartcard extension should be trans-
parent to the card terminal application. JavaCards
with small memory using the SCE should be replaca-
ble by future JavaCards with larger memory without
a need for changes to the application. We discuss a
number of architectural models of the SCE, their con-
sequences for application design, migration paths for
existing applications and the security and privacy is-
sues involved. Finally, we describe an implementation
of the SCE and its use within the FASME project.

2 The Basic Concept

The basic idea of the smartcard extension is to store
application data not on the smartcard itself but on an
external (virtual memory) server. This requires a net-

work connection to a memory server and two software
components: A communication service to this memory
server and a memory manager, ie. an instance deciding
which data accesses are mapped to the card and which
shall be delegated to the server.

The communication service resides on the card ter-
minal. In most applications the card terminal consists
of a card reader which is connected to a microcontroller
(eg. in a point-of-sales device) or to a PC. In both cases
a connection to a card service provider by a telephone
line or to the Internet or Intranet is available. The
communication service can thus provide a secure con-
nection to the memory server, which stores the data in
encrypted, signed, or in clear text form, depending on
security requirements. If the terminal device running
the communication service cannot be trusted, then the
JavaCard can be used to encrypt and sign the data,
which then is transmitted and stored only in encrypted
form so long as it is outside of the (trusted) JavaCard.

In traditional operating system contexts, a mem-
ory manager translates addresses of a virtual mem-
ory space into addresses of a physical memory space.
If the virtual address of a certain data object cannot
be mapped to a physical address, then this data ob-
ject must be loaded from a suitable backing store into
a physical address (possibly overwriting this physical
address and thus destroying any previously established
mapping). The virtual memory address then is trans-
lated to this new physical address.

By its design principles, Java does not allow a di-
rect manipulation of memory locations, and access to
objects is never by addresses but by object references.
Implementing a “traditional” memory manager would
therefore require the superficial construction of an ad-
dress and contents based memory model, for example
on top of a Java byte array. We chose the more natu-
ral approach of the object oriented data access by call-
ing suitable access methods on those objects whose in-
stance variables we want to change. A data access thus
always consists in calling a method on an object. The
object itself is known through an object reference which
is valid within the virtual machine of the JavaCard and
the code of this object must be resident within the vir-
tual machine. However, from the point of view of those
application components using the object, its instance
variables could be stored on the card itself as well as
on the memory server. In both cases they shall be ac-
cessed using access methods only.

Up to now, the concept seems quite straight forward.
Difficulties arise, however, due to the specific execution
modes of a smartcard and from the aim to make this
memory extension transparent for most components of
the entire system.

www.manaraa.com

3 Design Options for the Extension

Our concept still allows a wide range of design op-
tions. This section describes the interconnection of a
basic memory manager with smartcard middleware lay-
ers and introduces a tag-length-value storage concept.

3.1 Smartcard Middleware Architecture

Smartcards use a special mode of communication
with the outside world [3]: A card “reader” or “ter-
minal” sends specially formatted byte codes, so called
application protocol data units (APDUs) to the card.
Upon reception of an APDU, the card activates a regis-
tered method, which upon termination must provide a
return value in special APDU format. To allow the ap-
plication programmer a more service oriented view of
the card, formatting of application data into APDU
schemata, communication with the card reader and
card management usually are delegated to smartcard
middleware such as OCF? [2] and PC/SC* .

OCF is the industry standard for smartcard access
in a Java environment. It is an extensible collection
of classes for the card terminal or the connected PC,
supporting the development of JavaCard applications.
The terminal part of the application uses the conve-
nient, object structured interface of a CardService ob-
ject. The smartcard part, independent of the use of
OCF, employs the usual APDU-communication. The
application programmer can be further relieved from
OCF details by packaging OCF-specific startup code
into a SmartCardProxy. Fig. 1 illustrates this archi-
tecture.

3.2 Basic Memory Manager

Suppose, a CardService object offers a void
setBalance (float x) and a float getBalance ()
service for a cash card, each sending a suitable APDU
to the smartcard. Upon reception of the APDU, the
card executes an access method which writes or reads
the balance variable, and sends back a response APDU.
Control then returns to the application.

For the smartcard extension, the CardService is
modified. The decision to delegate a data access to the
external memory server can be made on the terminal
or on the card.

If the decision is made on the terminal, the
CardService has to know which values are stored on-
card and which are stored remotely. It asks the card

30CF: Open Card Framework. http://www.opencard.org
4PC/SC: Personal Computer / Smartcard.
http://www.pcscworkgroup.com

SmartCard

<<OCF-CardService>> <<OCF-CardService>> <<OCF-CardService>>
SignatureCardService CryptoCardService ApplicationCardService

Eg OpenCard
Framework

%A pplication

Figure 1. OCF-based Interface.

SmartCardFacade

for an access-id and then performs the requested op-
eration on the value stored under this id on the ex-
ternal memory server. This design, however, requires
total trust into the terminal: A bogus application or
CardService could perform incorrect operations on the
value on the server, the operation no longer being un-
der control of the smartcard. On the other hand, this
approach allows an extension of the smartcard with-
out modifying the card resident code at all (provided
the CardService is aware of the access-id of the card,
which can be chosen to be the card-id, which the card
sends as response to the ATR (answer-to-reset) com-
mand executed upon insertion of the card into the
reader).

In a more secure design, this decision is made by
the smartcard itself. This also allows the cardlet to
disallow write and read accesses depending on the ap-
plication context, and to make security and plausibil-
ity checks of the values the application requests to be
written. In this design, the CardService sends a suit-
able APDU to the smartcard. The card then makes
all internal checks according to the semantics of the
application and, if required, generates appropriate er-
ror return codes. If all checks are passed, the card
however does not read or write the respective instance
variables on card but returns a response APDU to the
CardService, directing it to initiate a specific opera-
tion on the memory server. In this design, although the
decision is made on the smartcard, the CardService
could still send a bogus request to the memory server.
This can be easily prevented if the card provides the
request with a digital signature. If the terminal should
not know the values which, possibly after some inter-
mediary processing, is written to the card (or rather:
to its extension), the request can also be encrypted

www.manaraa.com

by the JavaCard. In addition to an extension of the
CardService, this approach also requires a (small)
modification of the smartcard access functions.

Fig. 2 illustrates the structure of the extension ar-
chitecture.

<<OCF-CardService>>

<<OCF-CardService>> >

SignatureCardServi ge CryptoCardService . ApplicationCardService
_____ - N
________ RETSUNERN
______ -
OpenCard BRIty
Framework <<OCF-CardService>>
SCECardService

SmartCardFacade

%A pplication

Figure 2. Smartcard Extension.

The enterprise Java beans concept and a remote
method invocation (RMI) strategy using the secure
socket layer (SSL) for data transport complete the se-
cure interaction of the individual components within
our architecture. The decision to use features of the
Java enterprise edition provides numerous configura-
tion advantages, but could, however, pose those prob-
lems of scalability and robustness which can be asso-
ciated with new architectural concepts not yet tested
under field conditions. Fig. 3 shows the overall smart-
card application, consisting of terminal, JavaCard and
external memory server, deployed within a Java 2 en-
terprise edition environment.

In all discussed approaches, the smartcard extension
is fully transparent to the off-card application.

3.3 Tag-Length-Value Data Storage

The above approach is inflexible since the respec-
tive individual access methods decide statically about
on-card or off-card storage of data. We therefore intro-
duce a tag-length-value storage service to our concept
[3]. This service, in the form of an on-card filesys-
tem, is common to smartcard technology. It stores val-
ues, identified by their tag and characterized by their
length. On a JavaCard, a typical implementation uses
a linear byte array of a length which is fixed at cardlet
compile time. To prevent overlap and to guarantee effi-
cient memory use, the length of the stored data objects
must be provided as well.

This storage concept allows the smartcard to dy-
namically try to store as many data elements as pos-
sible on the card itself before accessing the external
memory server. This concept adapts to varying mem-
ory sizes of different card models and to the specific
memory situation in multiapplication JavaCards. Fur-
thermore this approach can accomodate a compactify-
ing garbage collector on the storage file and store data
objects of varying length. Since the JavaCard standard
does not require a garbage collector most cardlets are
extremly conservative on runtime object creation and
do not rely on garbage collection. Therefore, and to
save on code memory, the tag-length-value store should
be restricted to its most basic functionality.

4 Implementation and Evaluation

To study the effects of our architecture on memory
consumption, we implemented a personal id smartcard
in various versions.

Version 0 and 1 are the traditional JavaCard im-
plementations with all data stored on the card. Ver-
sion 0 stores the data in instance variables, version 1
uses a tag-length-value (TLV) file. In version 2 data
is stored on the card using the set and get methods
to access the TLV file, but should the card run out
of TLV space, the external memory server is used. In
this case the card uses a generic signature and encryp-
tion method to sign and encrypt the requests sent to
the memory server. The single generic signature and
encryption method, although protected against access
from outside the card, could be used to fool the card
into signing a sensitive data element contrary to its
application semantics. For example, an attacker could
present the card the text of a contract using a setName
APDU. To prevent this, we can further design type- or
APDU-specific signature methods to include informa-
tion on the access method with which the request to
the server was signed. This information can be used
for audit purposes or for semantic checks in the ex-
ternal memory server. Version 3 is a straight forward
encoding of this concept.

Fig. 4 shows the memory consumption for imple-
mentations of these versions, grouped by the func-
tionality of the required on-card classes. The values
reported are lengths of the method bytecodes as ex-
tracted from the smartcards cap file after compilation
of the Java codes using IBM Visual Age for Java, ver-
sion 1.2. It demonstrates the small overhead incurred
by the extension architecture.

www.manaraa.com

“JuUATIUOJIIAUG UonIpy astidisjuyg g eaep ul pafo[da(UOISUd)XF piedjiewig '¢ 2InSI

SmartCard-Terminal

SmartCard

Privat&ey

//O
|

Data SecreiKey
Card-ID
CHvV ApplicationService Signatur;\Service Crypto?\ervice
N N

\ I I I

\ ! | !

i L L

% \\ | SCECardService — -

\ | J2EE-Client -1
ApplicationCardService 7]

H >0

=
5

Chv
A
l

Q

ApplicationService

Application

RMI-IIOP

O

register
=%

SCE-Server

__ — Zlog-on

.0

import

export

J2EE-Server

SCE-Application

Database
Card-ID

P

)

PubliKey

www.manaraa.com

Methodbytecodeizesxtracted
fronCARles

3500 ~

3000 A

2500 1344
” 649
2 2000
>
8
N
%» 1500 o]
3 O Securi
£ 10004 _,_| 1721 | 2720 | FSY
Qo

g2 O Get/Set
5004 775
OBase/CHV
o I3 1153 [153 1 153
O o i el
& &P
QQ’ 4@ AQ' AQ‘
CardAppleversions

Figure 4. Overheads of the Extension.

5 Conclusion and Future Work

The on-card memory limitations for application
data restrict many smartcard projects. The smartcard
extension, presented in our paper, can be a solution
for such difficulties. Depending on the capacity of the
smartcard, the card itself is able to decide which data
are stored on-card and which shall be stored remotely.
In addition to that, the tag-length-value data storage
enables an automatic adaption to the varying memory
size of different cards.

Presently this architecture is used in the EU project
FASME to store administrative documents in the form
of XML-files on the Europe-wide citizen mobility Java-
Card. Facilitating Administrative Services for Mobile
Europeans (FASME) maps the administrative pro-
cesses required for mobile European citizens (eg. regis-
tering a car or a new place of living) to an electronic in-
frastructure. Administrative and personal data, digital
documents, profile information and digital signatures
are stored on a JavaCard. The prototype, presently un-
der development, will be tested in three selected cities
(City of Cologne [Germany], City of Grosseto [Italy]
and City of Newcastle [United Kingdom]). Memory
restrictions prevent the storage of all required digital
documents on a citizen mobility JavaCard. In order to
solve the problem the presented smartcard extension
technology is used.

In this paper we concentrated on data accesses orig-
inating from the card terminal, which is the usual case
in smartcard applications. Future research will deal
with data accesses originating from the card itself and
with functions, too complex to be executed on the card.
These situations are more complex since off-card data
access triggered by on-card functions as well as remote

(off-card) function invocation disrupts the control flow
between card and terminal. Fortunately it is less com-
mon on todays smartcard applications.

The presented architecture offers further advantages
for advanced application scenarios: By moving all on-
card data (with the exception of the cards private key)
into the off-card storage area, the application data is
available for backup in case of loss of the smartcard.
Cryptographical techniques like key-recovery or key-
escrow can guarantee the decryption of encrypted data
for use by a freshly issued replacement card with a
fresh private key [9]. In multiapplication scenarios sev-
eral cardlets can share a common tag-length-value store
service and thus share items like the name or address
of the cardholder. Furthermore, a more efficient and
dynamic allocation of data memory to multiple appli-
cations becomes possible by providing a larger portion
of TLV-space to those cardlets which are often exe-
cuted by the card owner. These advanced applications
of the card extension are presently studied in detail.

References

[1] DISTINCT Project Consortium. Technical Deliver-
able. http://www.uninfo.polito.it/distinct/, 1999.

[2] OpenCard Consortium. OpenCard Framework Pro-
grammer’s Guide. http://www.opencard.org, 1999.

[3] Uwe Hansmann, Martin S. Nicklous, Thomas
Schick, and Frank Seliger. SmartCard Application
Development Using Java. Springer, 2000.

[4] Tilo Kienitz. RSA Chipkarte fiir Hbci, Implemen-
tierung auf einer Javacard. Master’s thesis, Univer-
sitit Rostock, 2000.

[5] Matthias Kaiserswerth and Joachim Posegga. Java
auf Chipkarten Das aktuelle Schlagwort. Infor-
matik Spektrum, 21(1):27ff, 1998.

[6] Michail Ljubich. SET fiir Java. In Proceedings of
the Info98, Potsdam, 1998.

[7] Michail Ljubich. Working Title: Splitting JavaCard
Application Protocols. PhD thesis, University of
Rostock, 2000.

[8] Nico Maibaum and Clemens H. Cap. Javac-
ards as ubiquitous, mobile and multiservice cards.
In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques

PACT2000, Philadelphia, USA, 2000.

[9] Bruce Schneier. Applied Cryptography. John Wiley,
1995.

www.manaraa.com

