
www.manaraa.com

Extending the Data Storage Capabilitiesof a Java-based SmartcardClemens H. Cap, Nico Maibaum1, Lars HeydenChair for Information and Communication Services2University of Rostock, Germanyfcap, maibaum, heydeng@informatik.uni-rostock.deAbstractPresent limitations on data memory for Java basedsmartcards are a serious restriction for application de-velopment. The paper presents a method for enhancingthe data memory using virtual memory. Transparencyfor the o�-card application is achieved by the facade de-sign pattern. Security constraints of smartcard applica-tions have implications for the overall architecture andin
uence the proposed design. The architecture is usedin the EU project FASME for storing a larger numberof XML-based administrative documents on a JavaCardfor electronic government purposes.1 IntroductionWith more than one billion copies, smartcards arean important device of todays information society. Thedevelopment of the JavaCard standard made this de-vice even more popular: Capable of processing a sub-set of the platform independent, object oriented, andwidely used programming language Java, the JavaCardputs smartcard technology at the disposal of many pro-grammers and signi�cantly shortens the time to marketfor smartcard applications [5].Unfortunately, the small memory of a JavaCard isa serious restriction for application development. To-day, JavaCards can be expected to have 1 { 4 kByteof RAM (for the runtime stack, temporary variablesand transient objects) 16 { 32 kByte of ROM (for thecard operating system, the Java virtual machine and1Supported by the EU Fifth Framework Project FASME,IST-1999-10882, http://www.fasme.org2Supported by the Heinz-Nixdorf Foundation.Classi�cation (CR 1998): C.3, C.5.3, D.4.4, H.3Keywords: Smartcard, Virtual Memory, Memory Manage-ment, Information Storage and Retrieval, Electronic Govern-ment.

preinstalled applications) and 8 { 32 kByte of (
ash)EEPROM (for the application code of the cardlets, pre-sistent objects and class variables). It is the EEPROMlimitation which most seriously restricts developers.Recent JavaCard projects clearly demonstratedthis limitation: [4] implemented the German na-tional homebanking protocol HBCI (HomebankingComputer Interface, http://www.hbci.de). Despitemany space saving techniques, the implementationresults in a CAP-�le of 8.5 kByte and leaves only2480 Bytes for data. As a result, only two bankaccess codes can be stored on the card instead of�ve as required by the HBCI speci�cation. [6] de-scribes problems encountered when moving the SETprotocol to a JavaCard. [7] develops techniques forsplitting a secure application protocol into an on-cardand an o�-card part, in order to reduce the mem-ory requirements of the on-card components. In theFASME project (Facilitating Administrative ServicesforMobile Europeans, http://www.fasme.org) [8] per-sonal and administrative data, documents and pro-�le information of a citizen is stored on a JavaCardto facilitate administrative processes, such as regis-tering at a new place of living. In the DISTINCTproject (Deployment and Integration of SmartcardTechnology and Information Networks for Cross-Sector Telematics, http://www.distinct.org.uk) userpreferences on a smartcard adapt the user interfaceand the collection of services o�ered. All mentionedprojects are troubled by the limited on-card data mem-ory [8], [1].An often mentioned advantage of the JavaCard isthe possibility to download new applications (so calledcardlets) dynamically, as they are required by the cardowner. Furthermore, JavaCards support multiapplica-tion scenarios. With the above examples of memorytroubles even for single applications the practical useof multiapplication settings may be seriously doubted,especially with available memory sizes lagging behind1



www.manaraa.com

manufacturer roadmaps and white papers announce-ments.What are { besides waiting for larger cards { thepresent possibilities of dealing with this limitation?It is always possible to store the identity of the cardowner on the card and to transmit it to the card termi-nal, which then uses a database to associate this iden-tity with the required application parameters. Thisapproach has obvious security and data privacy 
awsfor most scenarios in which the card terminal cannotbe fully trusted. In typical smartcard applications thecard stores and transmits certain rights, pro�les or spe-ci�c attributes of the owner but should not disclose hisfull identity. The transmitted information often is ofa con�dential nature, which the user does not want tohand over to a central database. European mental-ity favours privacy protection mechanisms (and laws)where personal data is under the tight control of thatperson. It mandates the possibility of the card ownerto view and fully understand every bit on a smartcardshe is using.Space saving coding techniques make a more e�-cient use of the limited memory, but at the price ofa very twisted program structure, which is untypicalfor Java and object oriented development [4]. Applica-tion splitting techniques move parts of the code to the(untrusted) card terminal [6]. However, the splittingof a secure application protocol may endanger its secu-rity properties. Furthermore, these techniques slightlyreduce the card-resident code portion and do not helpin case of large applications.In this paper we present the smartcard extension(SCE) as a new concept for enlarging the memory of aJavaCard for application data. The basic idea is wellknown and uses a networked virtual memory. How-ever, the security and privacy needs of smartcard ap-plications require additional cryptographic techniques.Furthermore, the smartcard extension should be trans-parent to the card terminal application. JavaCardswith small memory using the SCE should be replaca-ble by future JavaCards with larger memory withouta need for changes to the application. We discuss anumber of architectural models of the SCE, their con-sequences for application design, migration paths forexisting applications and the security and privacy is-sues involved. Finally, we describe an implementationof the SCE and its use within the FASME project.2 The Basic ConceptThe basic idea of the smartcard extension is to storeapplication data not on the smartcard itself but on anexternal (virtual memory) server . This requires a net-

work connection to a memory server and two softwarecomponents: A communication service to this memoryserver and a memory manager , ie. an instance decidingwhich data accesses are mapped to the card and whichshall be delegated to the server.The communication service resides on the card ter-minal. In most applications the card terminal consistsof a card reader which is connected to a microcontroller(eg. in a point-of-sales device) or to a PC. In both casesa connection to a card service provider by a telephoneline or to the Internet or Intranet is available. Thecommunication service can thus provide a secure con-nection to the memory server, which stores the data inencrypted, signed, or in clear text form, depending onsecurity requirements. If the terminal device runningthe communication service cannot be trusted, then theJavaCard can be used to encrypt and sign the data,which then is transmitted and stored only in encryptedform so long as it is outside of the (trusted) JavaCard.In traditional operating system contexts, a mem-ory manager translates addresses of a virtual mem-ory space into addresses of a physical memory space.If the virtual address of a certain data object cannotbe mapped to a physical address, then this data ob-ject must be loaded from a suitable backing store intoa physical address (possibly overwriting this physicaladdress and thus destroying any previously establishedmapping). The virtual memory address then is trans-lated to this new physical address.By its design principles, Java does not allow a di-rect manipulation of memory locations, and access toobjects is never by addresses but by object references.Implementing a \traditional" memory manager wouldtherefore require the super�cial construction of an ad-dress and contents based memory model, for exampleon top of a Java byte array. We chose the more natu-ral approach of the object oriented data access by call-ing suitable access methods on those objects whose in-stance variables we want to change. A data access thusalways consists in calling a method on an object. Theobject itself is known through an object reference whichis valid within the virtual machine of the JavaCard andthe code of this object must be resident within the vir-tual machine. However, from the point of view of thoseapplication components using the object, its instancevariables could be stored on the card itself as well ason the memory server. In both cases they shall be ac-cessed using access methods only.Up to now, the concept seems quite straight forward.Di�culties arise, however, due to the speci�c executionmodes of a smartcard and from the aim to make thismemory extension transparent for most components ofthe entire system.2



www.manaraa.com

3 Design Options for the ExtensionOur concept still allows a wide range of design op-tions. This section describes the interconnection of abasic memory manager with smartcard middleware lay-ers and introduces a tag-length-value storage concept.3.1 Smartcard Middleware ArchitectureSmartcards use a special mode of communicationwith the outside world [3]: A card \reader" or \ter-minal" sends specially formatted byte codes, so calledapplication protocol data units (APDUs) to the card.Upon reception of an APDU, the card activates a regis-tered method, which upon termination must provide areturn value in special APDU format. To allow the ap-plication programmer a more service oriented view ofthe card, formatting of application data into APDUschemata, communication with the card reader andcard management usually are delegated to smartcardmiddleware such as OCF3 [2] and PC/SC4 .OCF is the industry standard for smartcard accessin a Java environment. It is an extensible collectionof classes for the card terminal or the connected PC,supporting the development of JavaCard applications.The terminal part of the application uses the conve-nient, object structured interface of a CardService ob-ject. The smartcard part, independent of the use ofOCF, employs the usual APDU-communication. Theapplication programmer can be further relieved fromOCF details by packaging OCF-speci�c startup codeinto a SmartCardProxy. Fig. 1 illustrates this archi-tecture.3.2 Basic Memory ManagerSuppose, a CardService object o�ers a voidsetBalance (float x) and a float getBalance ()service for a cash card, each sending a suitable APDUto the smartcard. Upon reception of the APDU, thecard executes an access method which writes or readsthe balance variable, and sends back a response APDU.Control then returns to the application.For the smartcard extension, the CardService ismodi�ed. The decision to delegate a data access to theexternal memory server can be made on the terminalor on the card.If the decision is made on the terminal, theCardService has to know which values are stored on-card and which are stored remotely. It asks the card3OCF: Open Card Framework. http://www.opencard.org4PC/SC: Personal Computer / Smartcard.http://www.pcscworkgroup.com

SmartCard

Application

OpenCard
Framework

<<OCF-CardService>>
SignatureCardService

<<OCF-CardService>>
CryptoCardService

<<OCF-CardService>>
ApplicationCardService

SmartCardFacadeFigure 1. OCF-based Interface.for an access-id and then performs the requested op-eration on the value stored under this id on the ex-ternal memory server. This design, however, requirestotal trust into the terminal: A bogus application orCardService could perform incorrect operations on thevalue on the server, the operation no longer being un-der control of the smartcard. On the other hand, thisapproach allows an extension of the smartcard with-out modifying the card resident code at all (providedthe CardService is aware of the access-id of the card,which can be chosen to be the card-id, which the cardsends as response to the ATR (answer-to-reset) com-mand executed upon insertion of the card into thereader).In a more secure design, this decision is made bythe smartcard itself. This also allows the cardlet todisallow write and read accesses depending on the ap-plication context, and to make security and plausibil-ity checks of the values the application requests to bewritten. In this design, the CardService sends a suit-able APDU to the smartcard. The card then makesall internal checks according to the semantics of theapplication and, if required, generates appropriate er-ror return codes. If all checks are passed, the cardhowever does not read or write the respective instancevariables on card but returns a response APDU to theCardService, directing it to initiate a speci�c opera-tion on the memory server. In this design, although thedecision is made on the smartcard, the CardServicecould still send a bogus request to the memory server.This can be easily prevented if the card provides therequest with a digital signature. If the terminal shouldnot know the values which, possibly after some inter-mediary processing, is written to the card (or rather:to its extension), the request can also be encrypted3



www.manaraa.com

by the JavaCard. In addition to an extension of theCardService, this approach also requires a (small)modi�cation of the smartcard access functions.Fig. 2 illustrates the structure of the extension ar-chitecture.
SmartCard

Application

OpenCard
Framework

<<OCF-CardService>>
SignatureCardService

<<OCF-CardService>>
CryptoCardService

<<OCF-CardService>>
ApplicationCardService

SmartCardFacade

<<OCF-CardService>>
SCECardService

Figure 2. Smartcard Extension.The enterprise Java beans concept and a remotemethod invocation (RMI) strategy using the securesocket layer (SSL) for data transport complete the se-cure interaction of the individual components withinour architecture. The decision to use features of theJava enterprise edition provides numerous con�gura-tion advantages, but could, however, pose those prob-lems of scalability and robustness which can be asso-ciated with new architectural concepts not yet testedunder �eld conditions. Fig. 3 shows the overall smart-card application, consisting of terminal, JavaCard andexternal memory server, deployed within a Java 2 en-terprise edition environment.In all discussed approaches, the smartcard extensionis fully transparent to the o�-card application.3.3 Tag-Length-Value Data StorageThe above approach is in
exible since the respec-tive individual access methods decide statically abouton-card or o�-card storage of data. We therefore intro-duce a tag-length-value storage service to our concept[3]. This service, in the form of an on-card �lesys-tem, is common to smartcard technology. It stores val-ues, identi�ed by their tag and characterized by theirlength. On a JavaCard, a typical implementation usesa linear byte array of a length which is �xed at cardletcompile time. To prevent overlap and to guarantee e�-cient memory use, the length of the stored data objectsmust be provided as well.

This storage concept allows the smartcard to dy-namically try to store as many data elements as pos-sible on the card itself before accessing the externalmemory server. This concept adapts to varying mem-ory sizes of di�erent card models and to the speci�cmemory situation in multiapplication JavaCards. Fur-thermore this approach can accomodate a compactify-ing garbage collector on the storage �le and store dataobjects of varying length. Since the JavaCard standarddoes not require a garbage collector most cardlets areextremly conservative on runtime object creation anddo not rely on garbage collection. Therefore, and tosave on code memory, the tag-length-value store shouldbe restricted to its most basic functionality.4 Implementation and EvaluationTo study the e�ects of our architecture on memoryconsumption, we implemented a personal id smartcardin various versions.Version 0 and 1 are the traditional JavaCard im-plementations with all data stored on the card. Ver-sion 0 stores the data in instance variables, version 1uses a tag-length-value (TLV) �le. In version 2 datais stored on the card using the set and get methodsto access the TLV �le, but should the card run outof TLV space, the external memory server is used. Inthis case the card uses a generic signature and encryp-tion method to sign and encrypt the requests sent tothe memory server. The single generic signature andencryption method, although protected against accessfrom outside the card, could be used to fool the cardinto signing a sensitive data element contrary to itsapplication semantics. For example, an attacker couldpresent the card the text of a contract using a setNameAPDU. To prevent this, we can further design type- orAPDU-speci�c signature methods to include informa-tion on the access method with which the request tothe server was signed. This information can be usedfor audit purposes or for semantic checks in the ex-ternal memory server. Version 3 is a straight forwardencoding of this concept.Fig. 4 shows the memory consumption for imple-mentations of these versions, grouped by the func-tionality of the required on-card classes. The valuesreported are lengths of the method bytecodes as ex-tracted from the smartcards cap �le after compilationof the Java codes using IBM Visual Age for Java, ver-sion 1.2. It demonstrates the small overhead incurredby the extension architecture.
4



www.manaraa.com

import

register

log-on

export

SCE-Server

Database
Data

Public Key

Card-ID

JDBC

J2EE-Server

SCE-Application

SmartCard-Terminal

SmartCard

Secret KeyData

Private Key

Public Key

Card-ID

SCECardService

J2EE-Client

ApplicationCardService

CryptoServiceCHV

CHV ApplicationService

ApplicationService

Application

SignatureService

RMI-IIOP

Figure3.SmartcardExtensionDeployedinJava2EnterpriseEditionEnvironment.
5



www.manaraa.com

Method bytecode sizes extracted 
from CAP files

153 153 153 153

775
1252

1721 17210

0

649

1344

0

500

1000

1500

2000

2500

3000

3500

Vers
ion 0

Vers
ion 1

Vers
ion 2

Vers
ion 3

CardApplet Versions

by
te

co
de

 si
ze

 in
 by

te
s

Security

Get/Set

Base/CHV

Figure 4. Overheads of the Extension.5 Conclusion and Future WorkThe on-card memory limitations for applicationdata restrict many smartcard projects. The smartcardextension, presented in our paper, can be a solutionfor such di�culties. Depending on the capacity of thesmartcard, the card itself is able to decide which dataare stored on-card and which shall be stored remotely.In addition to that, the tag-length-value data storageenables an automatic adaption to the varying memorysize of di�erent cards.Presently this architecture is used in the EU projectFASME to store administrative documents in the formof XML-�les on the Europe-wide citizen mobility Java-Card. Facilitating Administrative Services forMobileEuropeans (FASME) maps the administrative pro-cesses required for mobile European citizens (eg. regis-tering a car or a new place of living) to an electronic in-frastructure. Administrative and personal data, digitaldocuments, pro�le information and digital signaturesare stored on a JavaCard. The prototype, presently un-der development, will be tested in three selected cities(City of Cologne [Germany], City of Grosseto [Italy]and City of Newcastle [United Kingdom]). Memoryrestrictions prevent the storage of all required digitaldocuments on a citizen mobility JavaCard. In order tosolve the problem the presented smartcard extensiontechnology is used.In this paper we concentrated on data accesses orig-inating from the card terminal, which is the usual casein smartcard applications. Future research will dealwith data accesses originating from the card itself andwith functions , too complex to be executed on the card.These situations are more complex since o�-card dataaccess triggered by on-card functions as well as remote

(o�-card) function invocation disrupts the control 
owbetween card and terminal. Fortunately it is less com-mon on todays smartcard applications.The presented architecture o�ers further advantagesfor advanced application scenarios : By moving all on-card data (with the exception of the cards private key)into the o�-card storage area, the application data isavailable for backup in case of loss of the smartcard .Cryptographical techniques like key-recovery or key-escrow can guarantee the decryption of encrypted datafor use by a freshly issued replacement card with afresh private key [9]. In multiapplication scenarios sev-eral cardlets can share a common tag-length-value storeservice and thus share items like the name or addressof the cardholder. Furthermore, a more e�cient anddynamic allocation of data memory to multiple appli-cations becomes possible by providing a larger portionof TLV-space to those cardlets which are often exe-cuted by the card owner. These advanced applicationsof the card extension are presently studied in detail.References[1] DISTINCT Project Consortium. Technical Deliver-able. http://www.uninfo.polito.it/distinct/, 1999.[2] OpenCard Consortium. OpenCard Framework Pro-grammer's Guide. http://www.opencard.org, 1999.[3] Uwe Hansmann, Martin S. Nicklous, ThomasSch�ack, and Frank Seliger. SmartCard ApplicationDevelopment Using Java. Springer, 2000.[4] Tilo Kienitz. RSA Chipkarte f�ur Hbci, Implemen-tierung auf einer Javacard. Master's thesis, Univer-sit�at Rostock, 2000.[5] Matthias Kaiserswerth and Joachim Posegga. Javaauf Chipkarten { Das aktuelle Schlagwort. Infor-matik Spektrum, 21(1):27�, 1998.[6] Michail Ljubich. SET f�ur Java. In Proceedings ofthe Info98, Potsdam, 1998.[7] Michail Ljubich. Working Title: Splitting JavaCardApplication Protocols. PhD thesis, University ofRostock, 2000.[8] Nico Maibaum and Clemens H. Cap. Javac-ards as ubiquitous, mobile and multiservice cards.In Proceedings of the International Conference onParallel Architectures and Compilation TechniquesPACT2000, Philadelphia, USA, 2000.[9] Bruce Schneier. Applied Cryptography. John Wiley,1995.6


